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We investigate collective modes in metallic photonic crystals with subwavelength grooves. A large number
of frequency branches appear for TE polarization, which possess similar dispersion features of surface plas-
mons that occur in plasmonic structures. These modes are dispersionless in nature and intensively gathered
around an asymptotic frequency that depends solely on the groove height. The typical collective modes are
illustrated with the localized magnetic field patterns at the resonant frequencies. In particular, the field distri-
bution in each groove shows a close resemblance to the TEn0 mode of an open-ended waveguide. The
respective cutoff frequency serves as the asymptotic frequency of collective modes.
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I. INTRODUCTION

There bas been a great deal of interest in the properties of
plasmonic structures, where the coupling of photons and
electrons gives rise to surface-plasmon polaritons.1 These
waves are collective excitations of electric charges coupled
with the electromagnetic fields. Due to the evanescent na-
ture, the field intensities of surface plasmons are largely con-
fined and strongly enhanced at the metal-dielectric interface.
This feature has been explored in potential applications in
nano-optics2 and plasmonics,3,4 where the properties of pho-
tonics and electronics are merged at the subwavelength scale.

In periodically arranged structures such as plasmonic
crystals, surface plasmons appear as collective modes.5–7

There exist a large number of resonant modes gathering
around the so-called surface plasma frequency. These modes
exhibit a highly degenerate nature; that is, different modes
are oscillating at the same frequency. A similar feature ap-
pears as well in particle chains.8,9 Surface plasmons, how-
ever, do not exist in perfect metals. Although there would be
an unlimited supply of free changes in such ideal
conductors,10 the electromagnetic fields are completely ex-
pelled from the perfect metal and there are no states bound to
the surface for sustaining plasma oscillations.

If the perfect-metal surface is perforated with subwave-
length holes, the fields can somehow penetrate the �effective�
surface. The subwavelength holes present themselves distur-
bances to a totally reflecting surface, which support electro-
magnetic bound states and give rise to the so-called surface-
plasmonlike modes.11 In particular, these surface modes
exhibit similar dispersion relations with those of real surface
plasmons. This feature has been illuminated from the skin-
depth point of view.12 In addition, the fields in the vicinity of
a subwavelength hole are effectively represented by an elec-
tric dipole perpendicular to the surface and a magnetic dipole
parallel to it.13 This dipolar nature was also demonstrated
with the surface electric field measurements.14

In another aspect, surface-plasmonlike modes were iden-
tified as the eigenmodes associated with the subwavelength
hole structures.15,16 As the solutions of Maxwell’s equations
are scale invariant for perfect conductors,17 characteristics of
surface-plasmonlike modes are dependent solely on the hole
geometry and can, therefore, be engineered to a variety of
frequency ranges.11 For this reason, surface-plasmonlike

modes are also named designer surface plasmons.18,19 As
these waves are unusual to nonplasmonic materials, the me-
tallic structures with subwavelength holes are regarded as
plasmonic metamaterials.20,21

In this study, we investigate collective modes in metallic
photonic crystals with subwavelength grooves. These collec-
tive modes possess similar dispersion features of surface
plasmons in two aspects. First, a large number of frequency
branches appear and gather around an asymptotic frequency
for TE polarization, which are similar to surface-plasmon
modes that occur in plasmonic structures. Second, the typical
resonant modes exhibit a highly localized field distribution
within the grooves, outside which the field amplitudes are
rapidly decayed. This is another distinguished feature of sur-
face plasmons. In particular, the magnetic fields in each
groove retain a similar pattern, which is analogous to TEn0
mode of an open-ended waveguide. The respective cutoff
frequency serves the role of asymptotic frequency for collec-
tive modes. These collective modes give rise to flattened
bands with high density of states and small group velocities
near certain frequencies, which suggest the potential applica-
tions in sensing, signal processing, and communication.

II. BASIC EQUATIONS

Consider a two-dimensional photonic crystal composed of
a periodic array of perfect-metal cylinders. A certain number
of rectangular grooves, basically on the subwavelength scale,
are milled on the cylinder surface. Figure 1 shows the sche-
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FIG. 1. �Color online� Schematics of �a� the metallic photonic
crystal with subwavelength grooves and �b� the groove structure in
the unit cell. The shaded area denotes the perfect-metal region.
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matics of the photonic crystal and the subwavelength groove
structure in the unit cell. The basic thinking is to devise a
mechanism for trapping electromagnetic fields at the sub-
wavelength scale so that collective modes may arise due to
the oscillation of fields at that scale. A simple way to fulfill
this idea in photonic crystals is to construct a certain number
of grooves on each surface of the cylinder, with the groove
width being much smaller than the lattice constant. The ratio
of groove height to groove width is chosen to be large so that
the collective modes may occur at the frequency range which
is of primary interest for ordinary photonic crystals. In this
configuration, the interaction of electromagnetic waves with
subwavelength grooves is responsible for the existence of
collective modes in a perfect-metal structure. Basic features
of collective modes are either manifest or implied in the
dispersion characteristics. As in the case of surface plasmons,
these collective modes occur in TE polarization, where the
magnetic fields are oriented along the cylinder axis. In this
polarization, the electric fields normal to the metal surface
give rise to surface charges for sustaining plasma oscilla-
tions.

For propagation of waves parallel to the lattice plane, the
time-harmonic magnetic mode �with time dependence e−i�t�
is described by

− � · �1

�
� H� = ��

c
�2

H . �1�

Inside the perfect metal, the fields are identically zero �H
=0�. At the interface between the metal and surrounding di-
electric material, the boundary condition is given by �H /�n
=0.22 The dielectric constant of the surrounding material is
chosen as �=1. For periodic structures with infinite extent, it
is sufficient to solve the problem in one unit cell, along with
the Bloch condition

H�r + ai� = eik·aiH�r� �2�

applying at the unit-cell boundary, where k is the Bloch
wave vector and ai�i=1,2� is the lattice translation vector.
For photonic crystals with a delicate substructure, the disper-
sion relations can be efficiently solved by the inverse itera-
tion method.23–25 The eigensystem, Eq. �1�, is solved by
making good use of the Hermitian property of the differen-
tial operator. An arbitrary distribution of fields over the unit
cell is given as the initial guess of the eigenfunction and the
Rayleigh quotient

Q =
� 1

� ��H�2d�

� �H�2d�

�3�

is employed to calculate the eigenfrequency. By repeatedly
solving the matrix inversion, the solution is refined through
iterations until it is converged. The details of this approach
can be found in Ref. 23

III. RESULTS AND DISCUSSION

A. Collective frequency branches

Figure 2�a� shows the dispersion diagram of a metallic
photonic crystal with subwavelength grooves, where w /a
=0.4, h /a=0.2, d /a=0.04, and s /a=0.03. A large number of
frequency branches appear within a small frequency interval
for TE polarization. As the frequency gets closer to a /�
�1.18, more branches are observed. These collective modes
have similar dispersion features of surface-plasmon modes
that occur in plasmonic structures.7,26,27 They are dispersion-
less in nature; that is, their frequencies are insensitive to the
change in wave vector. As a result, the corresponding fre-
quency branches tend to be flattened. For real surface plas-
mons, the dispersionless nature comes from the strong cou-
pling of photons with electrons in the plasmonic material. As
the metals are treated as perfectly conducting materials in
this study, there is no such coupling behavior. In fact, the
electromagnetic mode at the perfect-metal surface is simply a
surface current.18 No states are bound to the surface for sus-
taining plasma oscillations. For comparison, the dispersion
diagram of the photonic crystal without subwavelength
grooves is plotted in Fig. 2�b�, where w /a=0.4 and h=d=s
=0. This diagram depicts the usual dispersion for ordinary
photonic crystals and no collective modes are observed.

For the present problem, the dispersionless nature comes
from the interaction of waves with the subwavelength struc-
ture. The grooves serve as a mechanism for maintaining elec-
tromagnetic bound states so that collective modes may occur
over the grooves. There exists an asymptotic frequency
around which the collective modes are gathered. As in the
case of subwavelength holes, this frequency is dependent on
the groove geometry only. Figure 3 shows the variations in
major collective modes with respect to four geometric pa-
rameters: the groove height h, groove width s, groove period
d, and cylinder width w. It is shown in Fig. 3�a� that collec-
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FIG. 2. �Color online� Dispersion diagram of the metallic photonic crystal �a� with subwavelength grooves, where w /a=0.4, h /a=0.2,
d /a=0.04, and s /a=0.03, and �b� without subwavelength grooves, where w /a=0.4 and h=d=s=0.
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tive modes move to lower frequencies as the groove height
increases. In particular, the asymptotic frequency of collec-
tive modes �denoted by the dashed line� is inversely propor-
tional to the groove height. On the other hand, the collective
modes are less affected by the other three parameters. In
Figs. 3�b�–3�d�, the groove height is held fixed and the
asymptotic frequency remains unchanged with respect to
groove width, groove period, and cylinder width.

B. Localized eigenmodes

The features of collective modes are further illustrated
with the resonant field patterns. Figure 4�a� shows the mag-
netic field contours of a typical resonant mode at a /�
�1.18 for the metallic photonic crystal with subwavelength
grooves, where w /a=0.4, h /a=0.2, d /a=0.04, and s /a
=0.03. Note that the fields are highly localized inside the
grooves and rapidly decayed outside. This is another distin-
guished feature of surface-plasmon modes that appear in
plasmonic structures.7,26,27 Due to localization, the interac-

tion of fields inside the grooves with those outside is rather
weak. The resonant frequency is therefore insensitive to the
change in wave vector and the branches become flattened or
dispersionless �cf. Figure 2�. In particular, the magnetic fields
in each groove retain a similar pattern and the field orienta-
tions are alternate over adjacent grooves. This feature indi-
cates that the coupling of fields between grooves is small and
the resonant modes possess a high degeneracy; that is, dif-
ferent modes oscillate at the same frequency. As the number
of grooves increases, the high degenerate nature becomes
more evident. This is consistent with the appearance of a
large number of collective modes within a small frequency
interval.

In addition to the collective mode in Fig. 4�a�, a similar
resonant mode occurs at a much higher frequency a /�
�3.53 for the same photonic crystal as shown in Fig. 4�b�.
Note that the fields are also localized inside the grooves but
with a different oscillation pattern. A nodal point �with zero
field� exists in each groove at about one third of the groove
height from the groove bottom. Besides, the resonant fre-
quency is approximately three times larger. The resonant
mode in Fig. 4�b� is therefore considered a high-order col-
lective mode for the subwavelength groove structure. These
modes also appear as flattened bands whose frequencies are
insensitive to the change in wave vector. A minor difference
is that the high-order collective modes spread a slightly
wider band width due to a somewhat complex coupling of
fields between the grooves.

C. Open-ended waveguides

The features of collective modes stated above can be char-
acterized by the properties of an open-ended waveguide.
Consider a rectangular waveguide of height h and width s,
where the top end is left opened. For TE polarization �Ez
=0�, the Hz field in the waveguide satisfies the Helmholtz
equation ��2+k2�Hz=0, where k is the wave number. The
perfect-metal boundary condition gives �Hz /�n=0 on the
left, right, and bottom sides. On the top end, the Hz field is
assumed to behave like Hz�e−�y, where � is a decay factor,
so that the fields are exponentially decayed away from the
open end �the condition of a bound state�. Accordingly, the
boundary condition is written as �Hz /�n+�Hz=0. The solu-
tion of Hz is given by

Hz�x,y� = Anm cos��ny�cos�m�x

s
�,

n = 1,2, . . . , m = 0,1,2, . . . , �4�

where Anm is an arbitrary amplitude constant and �n is the
nth root of

� tan��h� = � . �5�

Numerical solutions of �n for n=1,2 are plotted in Fig. 5�a�.
As � increases, �1 and �2 asymptotically approach �

2h and
3�
2h , respectively.

In the neighborhood of an asymptotic value, the approxi-
mate solution of �n can be obtained by use of Taylor’s ex-
pansion; for example, x tan�x��− �

2 �x− �
2 �−1−1+ �

6 �x− �
2 � or

(b)(a)

FIG. 4. �Color online� Magnetic field contours of two typical
collective modes at �a� a /��1.18 and �b� a /��3.53 for the me-
tallic photonic crystal with subwavelength grooves, where w /a
=0.4, h /a=0.2, d /a=0.04, and s /a=0.03. Red �dark gray� and
green �light gray� colors denote the positive and negative field val-
ues, respectively.
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FIG. 3. �Color online� Variations in major collective modes with
respect to �a� groove height h, where w /a=0.4, d /a=0.02, and
s /a=0.01, �b� groove width s, where w /a=0.4, h /a=0.2, and d /a
=0.05, �c� groove period d, where w /a=0.4, h /a=0.2, and s /a
=0.01, and �d� cylinder width w, where h /a=0.2, d /a=0.02, and
s /a=0.01. The dashed line denotes the asymptotic frequency of
collective modes.
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x tan�x��− 3�
2 �x− 3�

2 �−1−1+ �
2 �x− 3�

2 �. The expansion gives
rise to �1� �

2h �1− 1
�h �, �2� 3�

2h �1− 1
�h �, and so forth. If the

height h is substantially larger than the width s, the Hz field
of the dominate TEn0 mode is approximated as

Hz�x,y� � An0 cos	 �2n − 1��
2h

�1 −
1

�h
�y
 , �6�

and the respective cutoff frequency is given by

fcn0
�

�2n − 1�c
4h

�1 −
1

�h
� . �7�

Let the open-ended waveguide have the same geometry of
the subwavelength groove and the decay factor � be suffi-
ciently large. For �h=20 and h /a=0.2, we have fc10
�1.19c /a and fc20

�3.56c /a, which are close to the resonant
frequencies a /��1.18 and 3.53 for the two typical collec-
tive modes of the metallic photonic crystal with subwave-
length grooves �cf. Figure 4�. In particular, the Hz fields of
TE10 and TE20 modes, plotted in Fig. 5�b�, have a close re-
semblance to the magnetic field patterns inside the groove

for the two collective modes. These features indicate that the
subwavelength groove acts like an open-ended waveguide at
the resonant frequencies. In addition, we have from Eq. �7�
that fcn0

�
1
h . This clarifies that the asymptotic frequency of

collective modes is inversely proportional to the groove
height and not affected by the change in groove width,
groove period, and cylinder width �cf. Figure 3�.

IV. CONCLUDING REMARKS

In conclusion, the collective modes in metallic photonic
crystals with subwavelength grooves have been investigated.
The groove structure serves as a mechanism for sustaining
electromagnetic bound states in the perfect-metal structure.
Existence of collective modes is manifest on the intensively
gathered frequency branches and localized field patterns for
TE polarization. At the resonant frequencies, each subwave-
length groove acts like an open-ended waveguide with re-
gard to the mode pattern and cutoff frequency. As the prop-
erties of collective modes share some common features of
surface plasmons that occur in plasmonic structures and can
be engineered by the groove geometry, the metallic photonic
crystals with subwavelength grooves are eligible to be plas-
monic metamaterials. For real metals, the electromagnetic
fields no longer vanish inside the structure and two important
effects will alter the overall dispersion characteristics. The
effect of dissipation results in a decay factor �in time� of the
resonant modes and the effect of skin depth may give rise to
surface plasmons.28 In particular, if the surface modes hap-
pen to occur near the frequency of collective modes, it is
expected that the dispersion bands will exhibit a very differ-
ent and complex character.
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FIG. 5. �Color online� �a� Solutions of �n in Eq. �5� for n
=1,2. �b� Field patterns of TE10 mode �left� and TE20 mode �right�
of an open-ended waveguide, where s /h=0.15 and �h=20.
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